Stephen Harrod Buhner

I recently came across reference to this paper by Stephen Harrod Buhner, author of The Secret Teachings of Plants, in my Evolutionary Herbalism class. I had been wondering what he would know and which plant recommendations he would have in regards to CoVid-19. It seems important to share. I’ve learned about some of these plants in regards to Dengue research, which can do eerily similar things to the body as SARS-Cov-2.

It’s important to work with an herbalist on these recommendations. If there are existing remedies or medications being taken, this must be examined, as some of these plants can interfere or interact with other medications, causing issues with blood clotting, disrupt treatments for mental illnesses, etc. PLEASE DON’T GO ONLINE and just buy these plants and start taking them. They are medicines, some are in limited supply, and must be respected and applied responsibly and sustainably.

There is an update below the full article about the discussion about ACE-2….

A few Covid-19 herbal considerations from Stephen Buhner: (condensed version)

1) Plants specifically antiviral for the SARS-group of viruses- Scutellaria baicalensis (Chinese skullcap root),  Glycyrrhiza spp (licorice root), Forsythia suspensa (the fruit), Lonicera japonica (honeysuckle)

2) Block viral attachment to ACE-2 linkages- Specific for this are Glycyrrhiza spp (licorice), Scutellaria baicalensis (Chinese skullcap root), Sambucus spp (elder), Aesculus hippocastanum (horse chestnut), Polygonum cuspidatum (Japanese knotweed root), and cinnamon

3) Upregulate and protect ACE-2 expression, increase its activity (esp in the aged)-  Pueria spp (kudzu), Salvia miltiorrhiza (Dan shen), and Ginkgo biloba,  Crataegus spp (hawthorn) and Pueraria spp (kudzu)

4) Modulate cytokine responses- Angelica sinensis (dong quai), Astragalus, Polygonum cuspidatum (Japanese knotweed),, Cordyceps, Pueraria (kudzu), and Eupatorium perfoliatum (boneset),

5) Protect lung cells from hypoxia (Rhodiola).

6) Protect the cilia (Cordyceps, olive oil and leaf, any berberine- containing plants (Oregon grape root, goldenseal, barberry) , and Bidens pilosa).

7) Reduce autoimmunity and increase healthy immune function (Rhodiola, Astragalus, Cordyceps).

8) Protect endothelial cells (Polygonum cuspidatum – Japanese knotweed root.

9) Protect spleen and lymph system- Ceanothus spp (red root), Bidens pilosa. (you could also consider cleavers or chickweed here)

10) Stimulate DC maturation (Cordyceps spp) and increase T cell counts [Glycyrrhiza spp (licorice), Ceanothus (red root), Sambucus spp (elder), and zinc].


Stephen Harrod Buhner

The regrettable truth is that we live in a time of increasingly severe disruption of the ecosystems of our planet. As those disruptions worsen, more pathogenic microbial organisms will flow upward out of those disrupted ecological matrices into the human species. (Almost always this jump originates from a region-specific animal species.) The current emerging pathogen that is raising concern is known as SARS-Cov-2 – the infection which it causes is called Covid-19. And yes, it is confusing that it is Cov-2 when the virus is discussed but Covid-19 when it becomes an infection. (Just because a bunch of people get advanced degrees does not mean they are sensible or know how to talk to people who actually live in the real world.)

Not that the following description will be of any real use to those of us on the (non-Ph.D.) front lines, corona viruses are enveloped, positive-stranded RNA viruses which have the largest genome of all all viruses. (See, that doesn’t help at all.) Like most RNA viruses they regularly engage in recombination of their genetic code – that is they continually make new variants of themselves. Viruses are one of the most highly adaptable organisms on this planet.

Despite the existence of a few antiviral pharmaceuticals the only real treatment that western medicine has developed for viral infections is the creation of vaccines. Unfortunately vaccines for new organisms generally take a year or so to develop (which is why a Covid-19 vaccine is going to take awhile and will probably be, like the original SARS vaccine, only partially effective). And because viral organisms (such as influenza) tend to continually rearrange their genome, new vaccines for things like the flu have to be made every year. Viral pathogens are almost always far harder to deal with using western medical paradigms than bacteria (which are themselves proving harder to rationally control than originally believed).

There are perhaps a dozen or two known corona viruses, only seven or so (at this time) are known to infect people. The first one that raised serious international concern was SARS (Sudden Acute Respiratory Syndrome). The new, pandemic coronavirus is a very close relative which is why it’s called SARS-Cov- 2. As with the original SARS organism, it is a serious pathogen when it begins to spread among large numbers of people. Unfortunately, SARS-Cov-2 is a far more aggressive pathogen than the original SARS virus. An analysis of the first 75,000 people who were infected found that it has a mortality rate of around 2.3%, making it some 23 times more fatal than seasonal flu infections (which is why a worldwide pandemic could be very serious indeed). Like influenza organisms this virus primarily affects the lungs and is spread most often through respiratory droplets – though direct contact with body secretions can also transmit it.

As with the majority of respiratory viruses, infection stimulates coughing and sneezing which enables the virus to find more hosts. (Many people who are infected have minor or no symptoms, so that they act as stealth carriers, spreading the virus throughout the population.) Unfortunately, the virus can also survive for a relatively long time on most surfaces, thus being transmitted in some cases by touch. (You touch the door knob, then your mouth or nose, and Bob’s your uncle.)

SARS and MERS (Middle East Respiratory Syndrome – caused by a related viral pathogen) also tend to infect the GI tract in people who become ill. Around a quarter of those infected develop a rather intense diarrhea. Early studies of the new virus have found viral particles in stool samples which indicates it might also spread via feces (as SARS and MERS do) and most likely in urine (again like SARS and MERS).

As with SARS, Cov-2 has a sort-of distinct three-stage impact on lung tissue once someone is infected: initial infection that allows viral replication, immune response which can include in more serious cases immune hyper-reactivity, and relatively minor to very severe pulmonary damage. That being said, most infections tend to be very much like the flu. Most people will in fact believe themselves to have the flu – not a coronavirus infection. In reality, Cov-19 infections for around three quarters of those infected will remain relatively mild. Only about 18% of those infected experience a severe infection. Most of those will be older, that is people whose immune systems have aged over time; people with compromised immune systems; and people with existing disease conditions such as COPD.

Somewhat oversimplified, here is what serious Cov-19 infections do in the lungs. Once in the lungs the virus infects specific cells, among them the cilia. The cilia can be likened to tiny hairs. They protrude from cells in the lungs and continually move like waves on the ocean. This moves mucus and particulate matter up and out of the lungs.

During infection, SARS viruses often kill the cilia they infect which allows debris and fluids to build up in the lungs (this is pneumonia). When the infection becomes this serious the immune system can become highly activated. This sends large numbers of immune cells to the lungs to stop the infection, clear out the debris, and heal the tissues.

Oversimplified (again), during infection the affected cells send out chemical messenger molecules which (despite their being a variety of them with different names) I group together under the single name of cytokines. (Really, at root, this is just a tomato tomahto kind of thing; they are all messenger molecules that do stuff in the body during infections.)

When the Cov-2 virus, finds its preferred cells it uses very specific and evolutionarily ancient strategies to get inside those cells, take them over, and use their structures to reproduce. Then it breaks the cells open, releasing new viruses into the body which can then go on to infect other cells, and so on, ad nauseum. Along the way it stimulates coughing to infect more mammals to spread the virus into new hosts.

It is important to realize that viruses are some of the oldest living things on the planet (despite this many biologists continue to insist viruses are not “alive,” which as anyone with a brain can plainly see is inaccurate). Viruses are in fact billions of years old. As such they are exceptionally good at what they do and like all living things they learn as they go, adapting new behaviors along the way. Plants, in comparison, are only about a billion years old, complex land plants around 300 million years or so. In contrast our most ancient hominid ancestors are at most 1-2 million years old, our species in the form it has now is only around 35,000 years old. Western medicine (at a generous estimate) is 200 hundred years old. Its knowledge of viral pathogens and infections is only around 50 years old.

Much of that is rudimentary or even incorrect (based as it is on outdated ecological models and medical understandings).

All pathogens are sophisticated at modulating human cytokines to achieve their own ends. They have learned how to circumvent many of our normal immune responses in order to facilitate their entry into the body, their reproduction, and their release into new hosts. Elderly and compromised immune systems are quite often unable to respond sufficiently to these viral sophistications; they get overwhelmed.

Cytokine responses in the human body often involve inflammation (a normal and important part of the healing process and response to disease). With some infections, if the immune system can’t shut down the infection successfully an ever-worsening inflammatory cascade occurs (sometimes called a cytokine storm). This can sometimes be extremely serious. With the SARS-group of viruses, the damage usually occurs in the lungs. Even if people recover, this can take years to repair itself. If severe enough, it will cause death.

Cytokine storms like this can spread throughout the body via the blood and will sometimes cause what is called septic shock. Because the blood circulates through the liver and kidneys, these organs some of the earliest organs that are damaged by a cytokine storm. Eventually the organs shut down, death often follows. (With MERS acute kidney damage is very common.)

Mechanisms of Cellular Infection and Natural Interventions

One they get into the body, the SARS-group of viruses attach to what are called angiotensin-converting enzyme-2 (ACE-2) linkages on the surface of cells. This is an integral membrane protein found on many cells throughout the body, including the lungs (but not so much in the nasal or sinus tissues), GI tract, heart, vascular cells, and the kidneys.

ACE-2 is intimately involved in regulating the renin-angiotensis system (RAS). RAS is active throughout the body and in most organs including the lungs, spleen, lymph nodes, kidneys (where it regulates renal electrolyte homeodynamis), the vascular system (where it regulates constriction and relaxation of the vessels), and so on. RAS is crucial to the functioning of most organs in the body.

ACE-2 has a number of regulatory functions, among them converting angiotensin 2 (Ang-2) to less potent molecular forms. (Angiotensin 2 is a highly bioactive molecule, ACE-2 regulates/modulates its actions.)

The SARS-group of viruses attach to ACE-2 wherever it occurs on the surface of cells (including the cilia in the lungs). [Herbs that protect ACE-2 are Glycyrrhiza spp (licorice), Scutellaria baicalensis (Chinese skullcap root), Sambucus spp (elder), luteolin, Aesculus hippocastanum (horse chestnut), Polygonum cuspidatum (Japanese knotweed root), Rheum officinale, and plants high in procyanidins and lectins (e.g. cinnamon)].

These ACE-2 linkages are the entry point for the viruses infection of cellular tissues. Once ACE-2 is damaged by viral attachment and penetration ACE-2 levels in the lungs (or the affected organ) fall, ACE-2 function declines or is destroyed, the RAS system is no longer modulated properly. The lungs show enhanced vascular permeability, edema, neutrophil accumulation and worsening lung function.

ACE-2 function also tends to be less dynamic the older people grow. This is part of the reason that the SARS-group of viruses has more damaging impacts on the elderly [Herbs that upregulate ACE-2, increasing its levels in the body, are Pueria spp (kudzu), Salvia miltiorrhiza (Dan shen), and Ginkgo biloba]. ACE inhibitors (in contrast to ACE-2 upregulators) will actually increase the presence of ACE-2 and help protect the lungs from injury [ Some herbs that do that are Crataegus spp (hawthorn) and Pueraria spp (kudzu)].

Upon infection by the SARS-group, a cascade of inflammatory cytokines is initiated: IFN-gamma, CXCL10, IL-1b, TNF-a, and IL-6 are some of the major ones, IL-6 particularly so. RANTES, MCP-1, IL-8 are elevated in about half of

those who are infected. The p38 MAPk pathway is highly stimulated and as infection progresses levels of PGE2 and TGF-b (with a later elevation of IL-2) all rise. (Salvia miltiorrhiza is a strong cytokine adaptogen, specific for this kind of thing; it acts to normalize cytokine dysfunction.)

Lowering TGF levels can be very helpful (herbs that can do this are Angelica sinensis and Astragalus spp). HMGB1 levels during SARS-group cytokine cascades can be high, especially in those who are seriously ill (Salvia miltiorrhiza is specific for reducing HMGB1 levels). During infection this cytokine cascade initiates a massive movement of immune cells, their infiltration and accumulation into lung tissues. Generally, the older the infected animal (human or otherwise) the greater the cytokine upregulation and the worse the outcome.

Sharply reducing IL-1b has been found to significantly decrease the impact of the disease on the infected and to inhibit mortality [Some herbs for reducing this cytokine are Polygonum cuspidatum (Japanese knotweed), Scutellaria baicalensis (Chinese skullcap), Cordyceps spp, Pueraria (kudzu), and Eupatorium perfoliatum (boneset)].

Severe hypoxia (not enough oxygen) often occurs in the cells that are affected (and in the person so afflicted). The RAS-stimulated cellular hypoxia generates high levels of free radicals through the rapid increase of Ang-2, i.e. a hypoxia-re-oxygenation injury cycle. The cells generate large levels of hydrogen peroxide and superoxide radicals. Endothelial cells become porous and organ and cellular integrity is lost. In short the excessive Ang-2 levels (due to the destruction of the ACE-2 cells by the virus) causes massive damage to the lungs. Lymph and spleen tissues are often quite compromised as well.

Protecting the cells from the induced hypoxia significantly reduces the damage in the lungs. (Rhodiola is specific for this. It prevents hypoxia-induced oxidative damage, increases intracellular oxygen diffusion, and increases the efficiency of oxygen utilization.)

Again, the virus specifically targets (and replicates within) ciliated cells, destroying the cells and their capacity to move mucous up and out of the lungs. (Cilia-protective herbs are Cordyceps spp, olive oil and leaf, any berberine- containing plants, and Bidens pilosa.)

Autoantibodies are produced that begin to attack host epithelial and endothelial cells, increasing the destruction. Reducing autoimmunity (Rhodiola, Astragalus, Cordyceps spp) and protecting endothelial cells (Polygonum cuspidatum – Japanese knotweed root) is crucial.

Autopsies of those who have died from infection by the SARS-group of viruses has revealed that alveolar damage in the lungs is severe. There is massive damage to the lymph nodes of the lungs, including severe necrosis in the white pulp and marginal sinus of the spleen, destruction of the germinal centers in the lymph, apoptosis of lymphocytes, and an infiltration of monocytic cells. Protection of spleen and lymph are essential [Ceanothus spp (red root), Phytolacca (poke root), Scutellaria baicalensis (Chinese skullcap root), Salvia miltiorrhiza, Bidens pilosa].

While the SARS-group of viruses often replicates in ciliated epithelial cells, they do as well in infected dendritic cells, both mature and immature. It does not kill the DCs but merely stops them from maturing and stimulating an effective adaptive immune response.

DC s exist abundantly just under the epithelium layers in the lung tissue. The cytokine upregulation that infection causes makes the endothelium much more porous, allowing the virus to penetrate and infect the DC s. These viruses very powerfully upregulate IL-6 and IL-8 in the epithelial cells. These particular cytokines concentrate around the immature DCs and strongly inhibit their maturation and the priming ability of mature DCs for the generation of active T cells. This inhibits the production of active T cells and allows the virus to enter and severely damage the lymph organs in the lungs. Stimulating DC maturation

(Cordyceps spp) and increasing T cell counts [Glycyrrhiza spp (licorice), Ceanothus (red root), Sambucus spp (elder), and zinc] can help reduce symptom picture and disease severity.

Natural Protocols for SARS-group Viral Infections, Including COV-19

The rationale here is to find plants that will counteract the actions of the SARS- group of viruses, then to cross correlate those in order to choose the plants that are present in most categories of action and that have a tradition of use for these kinds of infections. What is needed are plants that have the following actions:

1) Plants specifically antiviral for the SARS-group of viruses; the strongest known so far are Scutellaria baicalensis (Chinese skullcap root), Houttuynia spp, Isatis spp, Glycyrrhiza spp (licorice), Forsythia suspensa (the fruit), Sophora flavescens, and Lycoris radiata (extremely potent). Lonicera japonica and Polygonum cuspidatum are also effective as antivirals for coronaviruses as a group.

2) Block viral attachment to ACE-2 linkages. Specific for this are Glycyrrhiza spp (licorice), Scutellaria baicalensis (Chinese skullcap root), Sambucus spp (elder), luteolin, Aesculus hippocastanum (horse chestnut), Polygonum cuspidatum (Japanese knotweed root), Rheum officinale, and plants high in procyanidins and lectins (e.g. Cinnamomum, i.e. cinnamon).

3) Upregulate and protect ACE-2 expression, increase its activity (esp in the aged), and lower Ang-2. Herbs specific for this are Pueria spp (kudzu), Salvia miltiorrhiza (Dan shen), and Ginkgo biloba. Use ACE inhibitors (in contrast to ACE-2 upregulators) to increase the presence of ACE-2 and help protect the lungs from injury: Crataegus spp (hawthorn) and Pueraria spp (kudzu) are specific.

4) Modulate cytokine responses (Salvia miltorrhiza), including the lowering of TGF levels [Angelica sinensis (dong quai), Astragalus monghilicus], regulating HMGB1 (Salvia miltiorrhiza), and reducing IL-1b [Polygonum cuspidatum (Japanese knotweed), Scutellaria baicalensis (Chinese skullcap), Cordyceps spp, Pueraria (kudzu), and Eupatorium perfoliatum (boneset)],

5) Protect lung cells from hypoxia (Rhodiola spp).

6) Protect the cilia (Cordyceps spp, olive oil and leaf, any berberine- containing plants, and Bidens pilosa).

7) Reduce autoimmunity and increase healthy immune function (Rhodiola, Astragalus spp, Cordyceps spp).

8) Protect endothelial cells (Polygonum cuspidatum – Japanese knotweed root).

9) Protect spleen and lymph system [Ceanothus spp (red root), Phytolacca

(poke root), Scutellaria baicalensis (Chinese skullcap root), Salvia miltiorrhiza, Bidens pilosa].

10) Stimulate DC maturation (Cordyceps spp) and increase T cell counts [Glycyrrhiza spp (licorice), Ceanothus (red root), Sambucus spp (elder), and zinc].

Suggested Protocols
General protective: Shuanghuanglian formulation. (Note: this was found in

the earlier SARS outbreak in China to help considerably – a review of the already mentioned mechanisms indicates why. It is now being tested in clinical trials in China for treatment of Cov-19 infections). The formulation is composed of Forsythia suspensa fruit (2 parts), Lonicera japonica (1 part), Scutellaria baicalensis (1 part).

Suggested dosage: 1 tsp 3x daily. However: I would also take with this the immune formulation from the following protocol in order to activate the most effective healthy immune function for this particular viral pathogen.

SARS-groupTreatment Protocol:

This is composed of three tincture formulations, as follows.

1) Core formulation: Scutellaria baicalensis (3 parts), Polygonum cuspidatum (2 parts), Pueraria (2 parts), Glycyrrhiza (1 part), decocted Sambucus leaf tincture (1 part). Dosage: 1 tsp 3x day, if acute 1 tsp 6x day.

2) Immune formulation: Cordyceps (3 parts), Angelica senensis (2 parts), Rhodiola (1 part), Astragalus (1 part). Dosage: Same as number one.

3) Cellular protection/cytokine modulation/spleen-lymph support: Salvia miltiorrhiza (3 parts), Ceanothus (2 parts), Bidens pilosa (1 part). Dosage: Same as number one.

Some Comments on Preparation of the Formulas

“Part” refers to how much of the plant matter is used. So, if you already have the tinctures, then – if you are working with fluid ounces (i.e., 30 ml for metric people) for the core formulation you would blend together three ounces of Scutellaria baicalensis, two ounces each of the tinctures of Polygonum cuspidatum and Pueraria, and one ounce each of the tinctures of Glycyrrhiza and decocted Sambucus leaf. The dosage would be as above for the tincture combination. (Please note if you want to make your own tinctures, please see the medicine making chapter of my book Herbal Antibiotics, second edition, or any equivalent source.)

About Decocted (Sambucus) Elder Leaf Tincture
This is not generally commercially available. (Please see the lengthy section on Elder in my book Herbal Antivirals). Elder leaf and bark are exceptionally potent medicines for a variety of things, including viral pathogens. Unfortunately bad press by adversarial medical activists in the early twentieth century spread the rumor that elder (Sambucus) is a poisonous plant. It is not. In descending order of impact the bark, leaves, and berries can cause vomiting in some people, not all. (I am not generally affected and use undecocted tinctures.) It depends on the dose and personal susceptibilities. However, if the herb is boiled (i.e., decocted) the compounds that cause vomiting are deactivated. Note: The leaves and bark are far more potent anti-virals than the berries or flowers. I would not suggest the berries for use in treating this pathogen; they are not, in my opinion, strong enough. To make a decocted elder leaf tincture: Boil four ounces of dried elder leaf (two ounces if fresh) in two quarts water until it is reduced by half. Cool, strain, then measure the amount of liquid left. To this add 25% pure grain alcohol. If your state will not allow you to buy pure grain alcohol (which is 95% alcohol) then after you cool and strain the liquid, put it in the pot again and reduce it once more by half. Let it cool again and then measure and add to it the same amount of 40% to 50% vodka, 50% is preferable. Hopefully, someone will begin making this commercially soon.

Some Other Plants Found Active Against SARS-group Coronaviruses

Artemisia annua, Cassia tora, Cibotium barometz, Dioscorea batatas, Eucalyptus spp, Gentiana scabra, Linera aggregate, Lonicera japonica, Panax ginseng, Polygonum multiflorum, Taxillus chinensis, Pyrrosia lingua, and Rheum officinale.


  • Bandara, M. et al. Indigenous herbal recipes for treatment of liver cirrhosis, Procedia Chemistry 14 (2015): 270-276.
  • Basak, Ajoy. et al. Inhibition of proprotein convertases-1, -7 and furin by diterpines of Andrograhis paniculata and their succinoyl esters, The Biochemical Journal 338 (1999): 107-13.
  • Buhner, Stephen Harrod. Herbal Antibiotics, second edition, Storey Publishing, 2012.
  • Buhner, Stephen Harrod. Herbal Antivirals, Storey Publishing, 2013.
  • Dharmananda, Subhuti. Shuanghuanglian: Potent anti-infection combination of lonicera, forsythia, and scute, itmonline.org/arts/shuang.htm, nd.
  • Hoffmann, H, et al. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry, Proceedings of the National Academy of Sciences USA 102(22) (2005): 7988-93.
  • Kuhn, JH, et al. Angiotensin-converting enzyme 2: a functional receptor for SARS coronavirus, Cellular and Molecular Life Sciences 61 (2004): 2738-43.
  • Lewis, Ricki. Covid-19 vaccine will close in on spikes, blogs.plos.org/dnascience/2020/02/20.
  • Li, Guangdi and Erik De Clerq. Coronovirus (2019-nCoV), nature.com/articles/d41573-020-00016-0.
  • Li, W, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature 426 (2003): 450-4.
  • Li, W, et al. Efficient replication fo severe acute respiratory syndrome coronavirus in mouse cells is limited by murine Angiotensin-converting enzyme2, Journal of Virology 78 (2004): 11429-33.
  • Li, W, et al. Receptor and viral determinants of SARS-coronavirus adaptation to human SCE2, The EMBO Journal 24(8) (2005): 1634-43.
  • Marshall, R.P. The pulmonary renin-angiotensis system, Current Pharmaceutical Design 9(9) (2003): 715-22.
  • McKeever, Amy. Here’s what coronavirus does to the body, National Geographic, February 18, 2020.
  • Peng, M. et al. Luteolin restricts dengue virus replication through inhibition of proprotein convertase furin, Antiviral Research 143 (2017): 176-85.
  • Wevers, Brigitte and Lia Van der Hoek. Renin-angiotensin system in human coronavirus pathogenesis, Future Virology 5(2) (2010): 145-161.
  • Xia, Shuai. et al. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike, Science Advances 5 (2019): eaav4580.
  • Zimmer, Katarina. Why Some Covid-19 cases are worse than others, The Scientist, February 24, 2020.

Copyright © 2020, Stephen Harrod Buhner, All Rights Reserved.


CORONA VIRUS, ADDENDUM Stephen Harrod Buhner

As I noted in the original piece I did on the corona virus and the suggested protocol for it, that paper was tremendously oversimplified. The reason is that after I completed the significant updates for the Healing Lyme book, I vowed to never write another medical herbal. The work is simply too demanding, the review of thousands of peer reviewed journals exhausting, and working up the bibliography . . . I would rather have my teeth drilled. Nevertheless, a few problems have arisen which I think need to be addressed; the simplification of the corona virus article is leading to some concern and confusion on a couple of technical matters.

The main one appears to be in response to a very short article in the Lancet, “Are patients with hypertension and diabetes mellitus at increased risk for Covid-19 infection?” While the speculations of the authors are only that . . . speculations . . . they do raise a very good point. It is this: because the corona virus attaches to ACE2 receptors will that not increase the number of receptors available to the virus, thus increasing disease presence in the lungs, in people who are taking ACE2 upregulators/ACE inhibitors?

Because my simplified article asserted that a primary rationale for the protocol was to use ACE2 upregulators/ACE inhibitors (among a number of other approaches) there is concern among some people that the protocol might worsen infection rather than ameliorating it. I understand the concern. So . . . let’s drag it all out from under the rug and look at it a bit. (Again, while in more depth, this is also a simplification – though less so than before. A look at my medical herbals shows just how technical and deep these kinds of discussions can become.)

There are a number of crucial points to keep in mind. The first is this: plant medicines are absolutely not drugs. They are far more complex in their actions. The way I discussed them in the initial corona virus article simplified that considerably. To go into it a bit . . . drugs are single chemical structure entities. A great many of them are designed to force an alteration in physiological functioning, to lower blood pressure or to increase levels of ACE2, for instance. Drugs almost never treat the underlying condition which is causing the symptoms; they just force the body to behave, to move into a range of behavior that some people have decided it must be within. This is a terribly flawed approach to disease but a very profitable one for pharamceutical companies. The last thing they want is for people to get well and to no longer need the drugs. It is simply a kind of “Ve haf vays to make you behaf.” Plant medicine and the healing system it comes out of is quite different.

It is crucial to understand that plant medicines are not simple. They have multiple constituents that do many things and they tend to work in synergy with each other. If other herbs are added to the mix then the synergy becomes even more complex. Ultimately, despite all the intellecutalism and mental analysis, herbalism is an art form, not give to the kind of misplaced reductionism of pharmaceuticals . . . though of course most people in the west insist on trying to do so anyway.

As an example: In that initial paper I mentioned that a rationale for the use of kudzu (Pueraria) is that it enhances ACE2 expression while lowering ACE. What I did not do is go into depth on its complex actions as a plant medicinal. And while I am not going to do a complete monograph here, I will just take one small, tiny, minuscule look at its more complex actions. To do so I am only going to look at one paper and to make matters worse that one is an in vivo study 3 (rats) of the use of an isolated constituent of kudzu, puerarin. I could have pulled out several hundred journal studies, looked at the historical use of the herb across cultures, and so on, but it would take a great deal of time that I don’t actually have. This is simply making the point.

Specifically: researchers created what is called systemic inflammatory response syndrome (SIRS) in rats by giving injecting them with zymosan-A. This caused a substantial systemic increase in a number of cytokines, including TNF-a and IL-6 (which are markers of increased inflammation) and a reduction in IL-10 (which tends to modulate inflammation). Those rats who were not given puerarin died rather rapidly. The rats given puerarin were protected from SIRS because the compound “significantly” reduced IL-6 and TNF-a levels while “markedly” increasing IL-10. In essence, kudzu, like many herbs is a cytokine modulator. This, by the way, bears out the traditional use of the herb for several millennia in China for a number of inflammatory conditions.

So . . . in the corona virus protocol itself, there are plants that specifically protect ACE2 integrity and reduce viral attachment and invasion. Then you have kudzu which can increase ACE2 levels while reducing ACE but which at the same time modulates excess inflammation in the lungs (as many of the herbs in this protocol do). The herb does many things, not one.

The reason why increasing ACE2 is important is that the lungs need ACE2 in order to function well. In the elderly those levels are often significantly reduced. This is one of the reasons why their lungs are a major point of entry for disease organisms, why they often die of pneumonia. So, in that population increasing ACE2 is important.

Kudzu is absolutely not a pharmaceutical, it is very complex. The problem with elderly patients who are on multiple pharmaceuticals, some of which force an increase in ACE2 or force 4 a decrease in ACE is that those drugs only do that, they do not act as complex modulators or synergists, enhancing physiological functioning, moving it toward health. So, again, it is not possible to look at plant medicines the same way that you look at drugs; they are not remotely the same things.

As to treating the elderly who are on drugs . . . that is not what this protocol is about. One of the very difficult problems we ran into in our clinical practices is the large number of drugs that most Americans are taking daily. In the case of treating hundreds of people with Lyme infections, by the time they got to an herbalist they had been on pharmaceuticals for years. And most of those drugs were simply prescribed from guesswork, not an accurate diagnosis. So, correcting for that involved a great deal of work.

People want to know if this protocol will successfully treat every single person who becomes Covid-19. I can’t answer that. It would entail a deep examination of that person’s health status, the drugs they are on, and then modulating the protocol to deal with the potential drug/herb interactions and so on ad infinitum.

The corona virus protocol is simply that, a protocol designed for the average healthy person who is somewhat advanced in age (the most susceptible group) without any reference to their existing medical conditions or any drugs they are on. (This is true of every protocol for every condition I have ever written about.) This is where treatment begins, then the practitioner has to alter that for things like pregnancy, drugs, existing conditions, and so on.

We are not doctors, we are something else. We don’t spend five minutes with the people who need our help but hours and days and weeks. Our job is to companion people in the journey through suffering, to help them get to the other shore if at all possible. And that takes a great deal 5 of actually seeing the person in front of us and modulating protocols minute by minute if necessary. That is our job. But this always has to begin someplace that is based on some kind of legitimate understanding, some kind of legitimate rationale, not merely guesswork. That is what this protocol is designed to be. That is what it is. The place to start.


  • Fang, Lei, Karakiulakis, Roth. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? The Lancet March 11, 2020.
  • Quan, Sheng and Jian-Jun Wang. Protective effects of puerarin from the roots of Pueraria lobata against systemic inflammatory response syndrome by regulating levels of related cytokines, Biology, 201, accessed at Semanticscholar.org 3/15/2020.

Copyright © 2020, Stephen Harrod Buhner

Share as Desired


Dragon Letters

Occasional transmissions
from the Edge from the Wild from the Other Side
to your inbox

Your email is safe with Ixchel. She can’t stand spam either. You are consenting to receive occasional invites to work with her. xoxo

Occasional transmissions
from the Edge from the Wild from the Other Side
to your inbox

Dragon Letters

Your email is safe with Ixchel. She can’t stand spam either. You are consenting to receive occasional invites to work with her. xoxo